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EFFECT (OF STEADY ROLLING ON LONGTTUDINAL
AND DIRECTIONAL STABILITY

By William H. Phillips
SUMMARY

The effects of steady rolling on the longitudinsl and directional
stability of alrcraft have been studled theoretically. Simplifying
agsumptlions have been made with regard to the longitudlinal and lateral
motions of the airplane in order to obtaln a solution which shows the
principal effects of the rolling motion. ' Rolling has been found: to
cause instability if the directional and longitudinal stabilities
ere different when the rolling frequency exceeds the lower of the
pritching and yawing natursl frequencles of the nonrolling airplans.

This instebllity lasts only during the tims the airplane 1s rolling and
would not, therefore, affect the normal fillght of an alrplesne. In the
case of alrplanes of short span and high density, carrying most of theilr
woight 1n thelr fuselsges, and flying at high altltudes, this Ilnstabllilty
might cause dangerocus attitude changes during rapid rolls. If the
directional and longitudinal stabllities are about equal, the instability
due to rolling will not occur.

If the rate of roll exceeds both the piltching and yewing natural
frequencles of the nonrolling alrcraft, the aircraft will be stable.
A continuocusly rolling aircraft wlll be staeble In this case even when
the nonrolling alrcraft has a certaln emount of instability about
one exils.

Applications of these conclusions to rollling airplanes and missiles
ere discussed.

.

INTRODUCTION

When an airplane rolls about an axis which is not alined with its
longitudingl axis, inertla forces are Introduced which tend to swing the
fuselage out of line with the flight path. These forces are ordinarily
neglected. when the usual theory of lateral stabllity of aircraft is used
to calculate the motion of an airplane 1n a roll. This assumption 1s
probably Justifiled for the case of most conventlional airplanes because
inertia forces involved are small compared with aerodyneamic forces on
the airplene. Design trends of very high-speed aircraft, however, which
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include short wing spens, fuselages of hilgh density, end flight at high
altituds, all tend to increase the inertia forces due to rolling in
comparison with the aerodynamic restoring forces provided by the longi-
tudlinal and directionsl stabilities. It is therefore desirable to
investigate the effects of rolling on the longitudinal and directional
stabllities of these slircraft. The inertia forces due to rolling velocity
are similer to those which are always taken into account In the study
of spinning, where they have a predominant effect. The effects of
rolling on stability discussed in this report occur only during the
period in which an aircreft 1s rolling, and therefore thsy do not—have
any effect on the stabllity ofan alrcraft in steady flight+

Some types of research missiles, which were not roll-stebilized and
therefore rolled continually in flight, have been employed to lnvestigate
longitudingl and letersl stabillty of airplane confilguraetions. Further—
more, certaln types of guided misslles may intentlonally roll continually
in flight. An anelysls would therefore be deslrable to determine the
effects of the rolling motlon on the behavior of these missiles.

The rolling motlon introduces coupling between the longltudinal and
lateral motion of the alrcraft. An exact solutlon of this problem is
very complicated because of the large number of degrees of freedom
involved. In the present report, simplifying assumptions have been made
with regerd to the longitudinel and lateral motions of the slrcraft in
order to obtain a solution which shows the principal effects of the
rolling motion.

SYMBOLS
a, b, ¢, d, & coefficients of quartic
A constant (emplitude ratio)
b wing span
c wing chord
C viscousg damping coefficient
cy, ' 11ft coefficlent L
Lloves
2
Cp pitching-moment -coefficient .
' VeSc
2
D - differential operator (g;%)

e base of natursl logarithms
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X, ¥, Z
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Iy - Iy
moment—of—inertia parameter ( ————=

Iz
shift in aesrodynamic center or in st:_Lck—fixed. maneuver point
moment of inertia
moment of inertia about X—exls
moment of Inertia about Y—-axis
moment of inertla about Z-exis
spring constant
rolling moment; or 1lift
elleron rolling moment
pitching moment; or Mach number
yawling momsnt
rolling velocity about body axis
steady rolling velocity
pitching veloclity about body axis
yawlng veloclty about body axis
wing area
time
nondimensional time  (pgyt)
nondimensional time required to damp to one—helf amplitude
true alrspeed
body axss of aircraft
angle of attack
engle of sldeslip
anguler displacement of single—degree—ocf—freedom system

fraction of critical damping of single-degree—of—freedom
system
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fraction of critical demping in pitch of nonrolling alrcraft
fraction of criticel demping in yaw of nonrolling aircraft
angle of pitch relative to flight—path dlrection

alr density

constant (phase angle)

engle of yaw relative to flight—path direction

actuel frequency of single—degree—of—freedom éystem

nondimensional frequencles of motion of rolling aircraft
with respect to body axes

undamped natural frequency of single—degree—of-freedom system

nondimensional undamped natural frequency in pitch of nonrolling
aircreft (ratio of pitching frequency to steasdy rolling
frequency)

nondimensional undsmped natural frequency in yaw of nonrolling
aircraft

Dot over a symbol indicates derivatlve wlth resvect to tims.

ANALYSIS

The motion of the ailrcraft is studied by means of Euler's equations.
These equations are set up in terms of angular veloclties and acceler-—
ations with respect to axbs fixed in the alrcraft.— The perlod and
damping of any motions obtalined as a final result will, therefore, be
those which would be messured by lnstruments, such as acceleromsters,
mounted in the alrcraft during the maneuvers. ZEuler's equations are

as follows:

»
M = Iy — #p(Iz — Ix) (2)
weani N = Igk — pa(Ix — Iy) (3)
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It 1s sssumed that the mass of alrcraft is distributed in a plane, so
that Iy = Ix + Iy. Equation (1), relaeting to the rolling motion, then

becomes

=
0

BLg + rLy + PLp + Lg

Ix(p + qr)

In the type of motion under consideration, the alleron rolling
moment Lg 1s offset, on the averagse, mainly by the damping momsnt DLy

while the quantities B, g, and r 1in general oscillaste about values
close to zero. It 1s assumed in the analysis which follows that the
rolling velocity 1ls comstent and that the effects of the varietions in
sldesllip, pitching veloclty, and yawing veloclty in producing rolling
moments through aerodynamic or Inertia effects may be neglected.
Equation (1) » Gherefore, dlsappears from the an.alysis and the remaining
equations become linear. As a result of this assumption, it is expected
that the enalysls may not apply very closely in cases where the rolling
veloclity ig small and the dihedral effect 1s large because a large
dihedral effect would result 1n apprecleble variation of rolling
velocity during a yawing oscillation. : e

The equations involving linear accelerastions along the X—, ¥—,
and Z-axes are omitted from the present analysis. The equation involving
longitudinal accelerations is omitted because the'motion is assumed to
occur at constant alrspeed. The squations involving lateral and normal
accelerations are omitted because, for the purposes of the present
analysis, ths longltudinal and directional motions of "the asircraft
which is not rolling are each consldered as single—degree—of—~fresdom
motlons involving only angular displacements., This assumption does not,
however, exclude the possibility of applylng the analysis to an aircraft
trimmed at en angle of atback different from zero. Imn this case, as the
alrcraft rolls, 1t travels in a hellcal path. The 1lift on the aircraft
balances the centrifugal force developed by the helicsl motion. Both
the 1ift and ceuntrifugal force, however, act through the center of
gravity and do not influence the moments acting on the alrcreft. The
stablility of anguler motlons of the alrcraft is therefore determined
by the moment equations (equations (1) to (3)). The helical motion
simply introduces steady angles of pltch and yaw gbhout which the
disturbed motlons take place.

In the discussion which follows, the terms ™oscillation frequency”
and "rolling frequemcy” ere often employed. By “oscillation frequency"”
is meant the circular frequency of a sinusoldal motlion, or 2x times
the frequency in cycles per second. The term "rolling frequency™ is
used Interchangeably with “rolling velocity" and is the rate of rotation
1n roll expressed Iin radians per second. In cases where watios of these
frequencles are used, the frequencies may, of course, be expressed in
- cycles per second instead of radians per second. .
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In accordaence with the assumptlon that the longitudinal and
directional motions of the aircraft which ls not rolling are each consildered
ag single—degree—of—~freedom motions, the pitching and yawing equations
for the nonrolling alrcraft becoms

oMy + aMy = T4 (%)
¥y + rRp = Ip® (5)

The motions obtained from the solutions of these equations would be damped
oscillatlons in pitch and yaw. The values of natbural freguency and
damping of these oscillations may differ somewhat from the values of
natural frequency and damping obtained frem the usual stability theory

In which additional degrees of freedom are teken into account. It would
be possible and probebly desirable, however, to substltute equivalent
values for the restoring and demping moment coefficients of equations (4)
and (5) siuch that the sarme frequency and demping for the single—degree—
of—freedom motions would be obtwlned as from the more complicated
stabllity theory. An albternate method which eccomplishes the same result
1s to set up the equations from the outset in terms of the undamped
natural frequency and demping ratios of the motion of the nonrolling
alrcraft. This procedure, which follows the method and notatlon of
reference 1, msy be described briefly by considering a single—degree—of—
freedom system conslsting of a plvoted beam, such as that shown in

figure 1, moving under the influence of a spring restoring force and
viscous damping. The equation of motlon for the system is

Iy +CY + Ky = 0O

If the followlng substitutions are msade,
o= \[E (ora?-F) (6)

c _C
ros (o) ™

e
u

the eguation becomss
¥ + 2twn? + @27 = 0

The quantlty w, is known as the undamped naetural frequency and 1s the
frequency of free oscillations of the system when the viscous damping 1s
zero. The quantity { 1s known as the damping ratlo and ig the ratio of
the exlsting damping of the gystem to that required for critical damping.
The free motion ofthe system, which is a decreasing Gsc tion, is
given by the expression

7 = Aot®n¥ g1n (0t — @)
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In this formula, A and ¢ are constante depending on the initial
conditions. The actual frequency of a free oscillation ® i1s related
to the undsmped nstural frequency by the Fformule .

- o,V/1 - €2

I? it 1s desilred to calculate from the frequency end damping ‘the
restoring—moment and d.amping—-momen'b coefficlents for the single—degree—
of—freedom system which simulates the alrcraft either in pitch or yaw,
the preceding relstlons for this type of system mey be employed.

The substitutions required to express egquations (4) end (5) in
terms of the natural frequencies and damping ratios of the motions in
pitch and yaw mey be made in a similar manner to those of equations (6)
and (7). In order to simplify the notation of the snalysis, the
frequencies of the nonrolling alrcraft will hereinafter be taken as
ratlos of 'l;he oscillation frequencles to. the steady rolling freguency pg-

The undemped natural frequency in pitch is therefore given by the

expression
—Mg ' -
] =‘/_i; | (or agPo? =_Iﬂ;i> (8)

The dempling ratlo :L_n pltch is given by the expression

M ='_'i49.>p’ 9
2\/_—T‘9I_Y or 2fgbgPo v (9)

Anslogous expreasions are used for the frequency and damping of the
yawing motions.

~ -

It is now deslred to express the equations for the rolslling alrcraft
in termg of these varlables, Inasmuch as the rolling does not influencs
the aserocdynamic moments acting due to changes In pitch and yaw, the
external moments are the same as those given in equations (4) and (5).
The pitching and yawlng equatlons for the rolling aircraft (equations (2)
and (3)) then becoms

M= eMa + qu
= Iy(q - rp)

= Iz — pa(Ix — Ty) We " £
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Dividing these equations}by Iy and Iy, respectlvely, glves thsg

formilas l

4§ —rp — GEQ-—-qﬂg 0

Ix "IY r
I‘-—- =0

If the expressions for the undamped natural frequencles and damping retios
in pitch and yaw (formulas (8) and (9)) are inserted in these equations,
the pitching and yawing .equations become

g — rp, + 2LewgPod + WgoDood = O

. Ix - I
r - Poq(“‘&'fz-% + 2fyoyppor + w\lrePoz\V =0

Here .the rolling velocity, assumed consgtant, has been written— py,. For

the small angles considered in the present analysig, the angle of

~L pitch 6 1s taken as the proJjection on the plana of—symmetry of the ’
alrcraft (the XZ~plane) of the angle between the flight path and the Ab*'y’
longitudinal axis of the aircraft. The angle of yaw V 1s taken ass.”
the projectlon on the XY—plane of the angle between the flight path and
the longitudinal axis. The axege X, Y, and Z are teken as the body
axes of the alrcraft.

Since the restoring forces on the alrcraft are related to @
and v, the angular veloclties ¢ and r must be expressed 1ln terms
of these angles and thelr derivatives. It—is therefore necessary to
resolve the angular velocitles q and r, which are measured with
respect to the body axes, along the flight—path axes. This procedure
is illustrated in figure 2, from which it may be shown that for small
angles of pitch and yaw

B 'lif =X - Poe
'\A' . ~
Hence I R L
a4 = é - Pow

N

L] .
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If these substitutions are made, the equations becoms
.y . . . 2
8 — po¥ — Dot ~ D020 + 2LgePo(é ~ DoY) + g P2 = 0

¥+ D8 + (2o¥ — D8)F + 2tyaypo(¥ + D) + ayPp2y = 0

I — Iy
———EE—- has been set equal to ¥. It is convenlent
to express time nondlmensionslly in térms of the frequency of the steady

rolling motion. Let the nondimensionel time +' equal pgt. Then define

where for simplicity

'PJ

D

I

&

lP-'

1
Do &

-k

In terms of this operator, the equations becoms
DP6 — 2Dy — 0 + 2gugDE — 2Lgws¥ + 70 = O

D2v+De+¢F—DQF+2§W+ 2§w9+a\v2w=0

In order to analyze the motlon of the rolling saircraft, the determinant

of the coefficlents of 8 and V¥ 18 set equal to zero. This determinant
is ’ *

D2 — 1 + 2fgugD + W™+ —2D — 2fguwp
D — IF + 2,0y D2+ F + 2L,a,D + ayd
The determinent may be expanded to glve the guartic
' L

=0

eD’ + bDS + D2+ dD + 6 =6 - (10)
where

a=1

b = egw + 28 q0q i

¢ =-F + 1+ ay’ + ap> + 2f gwg 26y

d = 2 guy® + 2 gug + 2 yaywg? + Lyay
F + apPoy? —0y® + 0pF + Dt 042ty

Q
i



10 NACA TN No., 1627

From the roots of this gquertic, the period and damping of the modes of
motion of the rolling alrcraft may be determined. Because of the method
adopted for expressing time nondimensionally, the frequencles of the
motlion thus determined are obtalned as ratios to the stwady rolling
frequency. Routh's discriminent for this quartic 1lg given by the
formula :

bed - a2 — eb?
Placing this expresslion equal to zero glves the condition for the boundary
between Increasging and decreasing oscillations of the system. When the

coefficlents are substitubtsd in thils expression and the operations are
carrled out, Routh's discriminant becomes

laém, Lo — 4‘.1\;;%329‘”? + by 2t gy — ng“\y b + 16§¢ %hts w0g° .

eyt g = oyt g ¢ 16y %oy ¢ MyeyLns?
+ h;e 9 ~ 84:\;; CupF + 16 3%3;% - 12§W§90>Q3F
+1+C¢wq,§9we5+l6§¢a\y£9w9 +8§¢a\y — 1t Py T (11)

A condition for the boundasry between stability and divergence is
obtulined. by setting the coefficient e of the quartic (formula (10))
equeal to zero.

In order to simplify the numerical analyslis and at the same time to
show the principal effects of the rolling motion, it 1s helpful to comslder .«
the case where the damping ratios (4 and {y of the longitudinal and t

directiongl osclllations of the nonrolling alrcraft—are zerc. Thils case
of undamped ogclllations 1s of much practical interest because the
oscillations of high-density alrcraft flyling at high altitudes are
usually poorly damped.

If the damping ratios ge and ;w equal zexro, the determinantal
equation for the rolling alrcraft becomes

b + cD2 +e =0

aD
where
g =1

F o+ 1+ oy’ +ap?
—F + wegmwe - wWQ + wggF

Q
]

o
Il

r
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This equation may be solved ex;pl:fcijbly as a quadratic in D° as follows:

' 2 2 2 2 2
D2 = — ¥ 5 + 5 —039%2-5-% — Wyg“F + F

(12)

The frequencies of the oscillations of the rolling eircraft are obtained
from the numericel values of D, +the square root of D2 (formule (12)),
when D 1s imaginary. There are two frequencles: omne deslgnated wy,

obtained with the minus sign before the radical of formula (12), and the
other designated wp, oObtained with the plus sign before the radical.

DISCUSSION OF RESULTS

Cage of zero damping of nonrolling alrcraft.- The first case
consldered is that of an aircraft with frequencles wg and wy in pitch

~and yaw when 1t is not rolling end with zero demping of these
oscillations (ge and by = 0). It will also be assumed that Ix = O,
Ix - Iy

I,

meny practical alrcraft and missiles of short span with slender fuselages
in whlch most of the weight 1s concentrated.

or F = —1. This case 1s a reasonsble close approximation to

The chersacteristice of the motilon of & rolling alrcraft of this type
are shown in Figure 3. Ehis Tigure presents the stable and unstable
regions in a plot of ay asgalinst cb\y2 end al.so ghows contour lines of
the frequencies of the osclllatlons performed by the rolling aircraft.
This figure brings out the symmetry 1n the effects of wuy and Ay which

would be expected from physlcel comnsideratlions for the case of Ix = O.

When both the pltching and yawing frequencies of the nonrolling
alrcraft are greater than the steady rolling frequency under conslderatlon,
the motlon is stable, in the sense that there is no divergence or
increasing oscillation. This condition is shown by the stable region
in the upper right~hand part of the dlagram where wy >1 and oy > 1.

In this region, the rolling aircraft has two modes of oscillation, both
of which are undemped and have frequencles different from those of the
ogcillations of the nonroliing alrcraft. If the pltching frequency of

the nonrolling aircraft ay equals its yawing frequency wy, then one
mode of oscillation of -the rolling aircreft has a freguency equal to this
frequency plus the rolling freguency and the other mode of oscillation
has a frequency equal to this frequency minus the roliing frequency. In
general, for wg not equal to wy, one frequency of the rolling alrcraft

is greater than the higher frequency of the nonrolling alrcraft; and the
other frequency is less tHan the lower frequency of the nonrolling alrcraft.
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When one of the fregquencies of the nonrolling alrcraft—equals the
frequency of the steady rolling motion (wg or wy = 1), the aircraft
becomes neutrally stable in one mods, as shown by the fact that the
frequency of this mode equals zero. This phenomenon may be explalned
physically on the basis that the restoring forces acting on the nonrolling
aircreft which produce a certaln oscillation frequency are Jjust offset by
the centrifugal forces which attempt to swing the fuselage out—of lins
with the flight path when the alrcraft rolls with thls frequency. This
effect ls somewhat analogous to a rotatlng shaft operating at its critical
speed. In fact, 1f the pltching and yawlng frequencies of the alrcraft
are both equal to the rolling frequency, the conditlons are exactly
similar to those encountered when a shaft baving equal stiffnsss in all
directions rotates at its critical spesd. When the frequencies of the _
alrcraft in pitch and yaw are dilfferent, and only one of these frequencles
equals the rolling frequency, the conditions may be shown to be analogous
to those encountered when a shaft of flattened cross sectlon rotates at
one of lts two critlcal speeds. It may be of Interest tov note that the
theory for the behavior of such a shaft is 1dentlcal with the theory
developed in this report for the rolling alrcraft.

When one frequency ofthe nonrolling alrcraft is less than the
steady rolling frequency and the other 1s greater, the rolling aircraft"
becomes statlcally unstable in one mode and performs e stralght divergence
a8 measured by instruments fixed in the aircraft. If both frequencles
of the nonrolling alrcraft are less that the steady rolling frequency,
however, the rolling sircraft 1s stable, as shown by the small stable
region in the lower lefi—hand corner offigure 3 for wg and wy

between O and 1. Here agaln there are two modes of undamped oscillation.
In this reglon, when the values of wg and wy are equal, the stabllity
is anslogous to that of & shaft having equal stiffness in wll directions
rotating ebove its critical speed. When ay and wy both approach zero,

which means that the static longltudinal and directicnal stsbilitles both
approach zerc, the two freguencies ofthe rolling alrcraft both approach
the rolling frequency. Physically, thls condition means that the rolling
aircraft can have its axis tilted from the flight path and, because of
its lack of static stability, will continue to roll about this tilted
axis. This rolling motion wlll cause periodic changes in the angles of
ettack and yaw with a frequency equal to ths xrolling frequency. These
pericdic changes would be measured ss constant—samplitude pitching and
yewing osclillletions by instruments fixed 1n the aircraft.

A smgll stable reglon exists where the frequency of—one mode of
oscillation of the nonrolling aircraft lsg less than the rolling frequency,
and in the other direction the ailrcraft has a certain degree of-static
ingtability. This stabilizing effect of the rolling motion may best be
visualized by consldering the motion of the alrcraft with respect to
fixed axes. A fin whlch provides stability in only ong directlon (eay,
yaw) wlll mske the rolling aircreft stable about-both axes, provided
the rate of roll 1s fast enough, because the fin rapidl]y turns from ons
Plane to snother. This effect only ocours far a relatively limited
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range of paersmeters, however, and is shown in figure 3 as the stable
reglon in the range of negative values of mp and ww A negative

value of wg s corresponding to an imaginary value of the frequency,
represents an exponentlal divergence defined by the equation

0 = Ae—imet'

This same equatlon, of course, represents a sinusoldel oscilllation of
frequcency wg for real values of wg. TFigure 3 was plotted in terms

of w92 and mwg rather than Wy and. Wy in order to Include the
imaginary velues of these freguenciles.

~

In the lower left~hand corner of figure 3 there 1ls & region of
increasing oscillations as measured by instruments fixed in the body.
In this reglon, where the nonrolling alrcraft has a large amount of
static ingtability, the longlitudinal exis of the rolling aircraft
performs & mansuver approximatlng stralight divergence with respect
to fixed axes; but because of the rolling, this motion shows up as an
increasing osclllatlion with respect to the body axes.

The effect of distributing welght aslong the wlngs as well as along
the fuselage on the behavior of the rolling alrcraft, agasin with zero
demping in pitch and yaw (&g = Ly = 0), is shown in figures 4 and 5.
Figure 4 presents the contour lines of the frequencies of the rolling
alrcraft on a plot of g2 agalnst wwz for F = -0.666. This velue
of F corresponds to the case where the moment of imertia sbout the
X-axls equals 0.2 tlmes the moment of inertia about the Ywaxis. The
results indicated by this figure are similar to those for the case where
all the welght 1s located in the fuselage. A somewhat smaller value of
the directional stability lg required, however, to avold divergence in
yaw of the rolling sircraft. Figure 5 1s a similar plot for F = 0.
This value of F corresponds to the case where the moment of inertie
about the X~axls equals the moment of lnertia ashout the Y—exis. In
this cagse a rolling motion produces no inertls yawing moment on the
yawed alrcraft. With large stability in pitch, the yawling freguency of
the rolling aircraft would therefore be expected to be the same es that
of the nonrolling sircraft. The results of figure 5 indicate that the
frequency wo, which represents malnly a yawlng motion with large

stabllity in pitch, approgches asymptotlically the yawlng frequency wy
as g becomes lgrge. Furthermore, the divergence boundary in yaw,

which occurs at wy = O for the nonrolling alrcraft, is unchanged by
the rolling motlon.

The speclal case where wg = wy &and Iy = 0 may be analyzed more
glmply by use of the equation of motion of the body with respsct to axes
fixed in space. This analysis allows a clearer physical interpretation
of the motion of the body and serves as a check on the results obtained
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previougly by mesns of Buler's equations. Thls speclal case corresponds
to conditions existing alomg & 452 line through the origin in figure 3.
The motlon of the system with respect ta axes £ixed I1n. space ls derived
in & followlng section of this paper, but first the resulis already
obtalned. by means of Euler's equations are stated. It mey be seen

from figure 3 or derived from formuls(lZ2) that the frequencies of the
rolling aircraft wlth respect to body axes for this case are given

by the formilas

Wy cn3+l

wy = |@p - 1

Here, @ eand @y are nondimensional fréq._uen_cj._es expressed as ratlos

to the steady rolling frequsmcy. The pitching frequency wg of the
nonrolling aircreft is egusl’ to. the yawlng frequency wy, and elther
gymhol might he ussd. The member on the right—hand side of the equation
for wy Indicates the abaciute value of the quantity wg — 1. If these
formilas ere put in terms of-actual freduencles, rather than nondimensionsl
frequenclss, they became

- —

WPy = Py + Po

#

B2Po

Hence, the frequencies of the rolling alrcraft :re glven by the sum and
by the ebsolute value of tha dlfference between the frequency of the
nonrolling alrcraft and the rolling frequency.

lwapo_ - Po

The solution for the motion bamed on the equations of motion with
respect to fixed axes 1s now considered., The dynamic system is shown
in figure 6(a). The restoring forces provided by the fins will us
be the same with respect—to fixed axes as with respect to axes roll
with the body. The forces would be exactly the same, for example, 1f
the body had e fin in the form of a circular cylinder. The assumption
that the forces are the same would be a close approximetion to the
conditions existing with a conventionsel four—fin tall. Because all the
welght ls locatwd slong the T—axis, any rolling motlion of the body sbout
the X—exis Has no effect whatever an the motlon of the X~exls of the body
with respect to fixed gpace. The motion of the X—exis of the bedy, '
therefore, 1ls composed of vertical and horizontal oscillations of
frequency agP,, exactly as in the case of the rponrolling body. The

most general motion of the axis is a combination of these two components
with erbitrary amplitudes and. phagse difference. This cambinatiom in

,
.-
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general causes the axls to swing so that any point on the axis traces an
elliptical path, as shown in figure 6(a). In order to see how this
result corresponds to that obtained previously for the mobtlion with
respect to body axes, the frequencies measured with respect to fixed

axes mist be converted to fregquenciesa messured with respect to axes
rolling with the body. This conversion lg a kinemstlic transformation,
with no dynamics involved. Ordinarily, the motion of the axis would

be resolved inta vertical and horlzontal components as mentloned previously.
If the body rolls when the axis is undergoling a vertical or horlizomtal
oscllIigtion, however, thse resulting oscillatlons with respect to body
axes wlll not have constant amplitude. In order to obtaln results
equlvalent to those previously described, 1t ls necessary tc break the
motion of the axis into components which lead to comstamt—emplitude
oscilletions with respect to body axes. Two such motions are possible:
cne a clockwlse and the other a counterclockwige rotatlon of a polimt on
the reer of the body. This polnt moves In a clrcular path with

frequency wgD,. These motions are shown in figure 6(b). These circular

motions of the body wilth frequency wyp, are possible motlons because

they may be obtalned by combining vertical and horizontal oscillations
of equal smplitude with a phase difference of 90°. Any possible motion
of the alrcraft masy be produced by combining these two circular motions
with the correct phase difference and amplitude. XExamples of possible
combinations are given In figures 6(c) and 6(d). Figure 6(d) shows that
the elliptical path, which is the most general type of motlion, may be
produced by this combination.

The frequencies of the rolling alrcraft as seen from body exes may
be derived by considering the angle—cf—ettack changes as the body rolls
when lte axls 1s performing one of the two clrcular motlons. The case
where the axls-revolves In a counterclockwlse direction with frequency wgPo
while the body rolls clockwlse with a frequency p, corresponds to the
formule, .

WPy = Py + Po

The case where the axls revolves In a clockwise directlon with
frequency agpPe while the body rolls clockwlse with a frequency Do
corresponds to the formula

WPy = |WgPy — Po |

The results obtalned by the anslysls based on fixed axes may therefore
be converted to body axes to give the same result as that obtained
directly from the analysis based on body axes.
~

A case in which the twao solutions might be considered toc dlsagree
is one in which the rolling frequency equals the pitching (and yawing)
frequencies. The results plotted In figure 3 show a condition of neutral
stebility to exist at this point, whereas the stability of the axis of
the body in the enslysis based on fixed axes was stated to be independent
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of the rete of roll. It should be noted, howsever, that any slight out—
of—trim pitching moment applied to the rolling aircraft at this point
would produce a verticel and horizontal moment varying sinusoidally with
time at the natural freguency of the axis. A conditlon ofresonance
would therefore exist and the vertical and horizonmtal amplitudes of

the undamped system would increasse Indeflnitely. In the ansalysis based
on body axes, thig same ocubt—of—trim pltching moment aepplied to the
neutrally stable system would cause the angle of pltch to lIncrease
indefinitely. The two methods of anslysls, therefore, lead to the

game result,

If under the conditions where the rate of roll equals the pltching

(and yawlng) frequencies, the axis of the body is dilsplaced in pltch,
then a yewlng veloclty wlll be introduced with respect to body axes.

Any demping forces proportional to yawing velocltywould extract snsrgy
from the system end prevent the amplitude from building up. The damping
1s therefore expected to Increase the stabllity of the system, at least
under conditlons where the pltching and yawlng frequencies are close to
the rolling frequency. The effects of damping are now consildered on the
bagis of the theory.

Case of-damped ogcillations of monrolling aeircraft.— The rate of
decrease of amplitude of the oscillationg of the nonrolling aircraft is
determined by the damping ratio {. The fraction of the original
amplitude to which the osclllation decays 1In one cycle is shown as a
function of § 1In figure 7. For ¢ = 0.2, <the oscillation damps
to 0.28 of its original aemplitude in one cycle. This emount of damping
is greater than that usually found for either the pltching or yawlng
oscillation of an alrcraft of high denslty and 1s uged to give an
extrems example of the effect of denplng on the stabllity of the
rolling alrcraft:

The divergence boundary for the rolling asircraft 1s determined by
setting the coefficient e of the quartic (equation (10)) equal to zero.
The divergence boundary for the case ;9 = gw = 0.2 and Iy =0 18 given

on e plot of wB? agalnst mwg in figure 8. This figure also corresponds
to any values of gy eand {y satisfying the relation Loty = 0.0k

because these quantitles enter into the coefflcient e only as a product.
By comparlng the boundaries of figure 8 with those of figure 3, it may be
seon that the addition of damping has broadensd the stable reglon 1n the

nelghborhood of the polnt awgy = 1, ay = 1, that is, where the frequencies

in pitch end yaw are close to the rolling fregquency. In other parts of-

the figure, the boundaries are but little changed. The boundary bebtween
increasing and decresesing oscillations 1s not shown in figure 8.

In practice, when the frequency of the nonrolling aircraft-is
changed, the -damping ratio also changes. For exsmple, 1f the frequency
in pitch is changed by varying the center—of—gravity location, the damplng
ratio increases as the alrcraft approaches neutrel stablillty because the
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damping moment provided by the tall remsins nearly constant while the
restoring moment decreases to zero. The condltion encountered in
practlice 1s more nesrly represented by the condition that gea@ equals
a congtant. This condition, for a single-~degree—of—freedom system, is
fulfilled when the viscous damping devlice remains the same as the spring
restoring force 1s varled. The divergence bounderles for the case

Cgg = 0.2 eand Cywy = 0.2 are plotted in figure 9. The results are
gimilar to those of figure 8 although, of course, the damping coefficient
is less at large values of the nondimensional frequencies and greater at
frequencles approaching zero. In figure 8, the asctual demping moment
decreases to zero when the corresponding frequency equals zero, and for
this reasgon the boundaries cross the same polnt as those of figure 3
when wg =0 or wy = 0.

The boundary between decreasing and increasing oscillations for the
cage of damped motion 1s obtalned by setting Routhls discriminant equal
to zero. This boundsry is also plotted In figure 9 for the case
Cgg = 0.2 and CWmW = 0.2. This boundexry is almost coincident with
the boundary between constant—emplitude osciliations and Iincreasing
osclllations glven in figure 3. Thus, the boundary between constant—
amplitude and Increasing oscillations, which cannot be strictly termed
& stability boundary, goes over into the Routh bhoundary as soon as any
damping is present.

The effect of damping on the characterlistics of the motion for
representative combinations of frequency and damping has been studied
by determining the roots of the stablllty quartics obtalned from
formula (10). The results are presented in figure 10 which shows the
roots on enlarged plots of wga egainst wwz similar to those previously
given in figures 3 and 9. Three conditions have been investlgated,
nemely, zero demping ({gwg = Lywoy = 0), equal demping about each
axles (fgwg = Lywy = 0.2), and zero dampling about one axle combined
with demping about the other axis (fgwg = O and {ywy = 0.2 or
vice versa). The resl roots represent convergences and divergences
whereas conjugate complex roots represent oscillations. Real roots or
real parts of complex roots determine the nondimensional tlme to
decrease to one—helf emplitude, 1f thsy are negative, or to double
aemplitude, 1f they are positive, In accordance with the formila

0.693
Real part of complex root

e =

The imaginery parts of complex roots give the nondimensional frequenciles
directly. Figure 10(a), which shows the results wlth zero demping, is
gimply a repetition of. what has previously been presented in figure 3;
but the roots are given to facilitate comparison with the cases of dampéd
motion. This flgure shows that constant amplitude oscllietions exist
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within the stebility boundary end that a divergencé 1s present ocutsilde
these boundaries in the reglon shown.

Figure 10(b) shows the results when both modes of oscillation of
the nonrolling aircraft have equal damping and corresponds to the case
for which divergence boundaries are shown in flgure 9., It may be seen
that 1n most of the stable region two modes ofoscllistion occur, both
of which damp to one—hglf amplitude in the sams tlime as the damped
oscillations of the nonrolling aircraft. The perlods of the oscillatlons
are very nesrly equal to those existing wilth zero damping. As the
divergence boundary 1s approached very closely, however, one mode of
osclllation changes into a palr of convergences. One of these convergences
becomes weaker upon cloger approach to the boundary until at the boundary
1t l1s transformed 1lnto a divergence. For the one polnt investigated, the
rate of dlvergence 1s glower then that for the case with zero damping.
The damplng changes the resl root, which determines rate of dlvergence,
by sbout the seme amount as it changes the resl part of the complex root,
which determines the damping of the oscillation. It may be concluded
that; within the region of constant=empliitude oscilletions of the
undemped motlion, damplng is very effective in providing stability and
causes the motlon to disappear 1n the sams time ae in the case of the
nonrolling aircraft. Outslde the divergence boundary for the damped
motion demping reduces the rate of divergence, but for practical values
of damping thls reductlion would not be importent.

Figure 10(c) presents the resulis for the case when one mode of
oacillations of the nonrolling sircraft is well damped and the other
mode has zero damping. Although this condition ls not likely to exlst -
in practice, 1t represents sn extreme exsmple of this inequality. This
example 1s intended to bring out the differsnces between this case and
the case of equal damplng of the two modes. The divergence boundaries
in this case are .the same as those for zero damping (fig. 10(a)).
Physically, this fact-means that when the aircraft has a mode of
oscillation of—the same frequency. as the rolling motion, it may be
oriented in such a way that-no angular veloclty occurs about-the axis
around which damping forces exist. Thus, the damping can have no effect
on this mode. In the region where oscillations exist, the damping is
one-half as grest as in the case of equal damping., This result means
that when the alrplane is rolling the damping ils effective about half
the time. The rate of dilvergence in the unstable region 1s intermedliate
between that for the case wlth zero damping and that with equal demping
about  the two axes. ’

APPLICATION OF RESULTS

Full—scale slrplanes.— The previous analysis indlcates that
instability may be caused by very rapid rates of roll in small heavily
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loaded alrplanss carrying a large proportion of their weight in their
fuselages and flyling at high altitudes. This instebility lasts only as
long as the alrplane rolls and would not, therefore, cause difficulty

Jdn normal flight. The instabllity in a roll might, however, cause an
alrplane to reach dangerous attitudes if the dilvergence were sufficiently
rapid.

The rate of roll of an alrplane with a given alleron deflection and
true alrspeed remains epproximately constant as the altltude 1s Increased,
but the periods of the longltudinal and directional oscillations increase
because of the reduced indlcated airspeed. The rolling frequency mey
posglibly exceed one or the other osclllation frequencies, with the result
that 1lnstability of the type dlscussed would be encountered. For example,
the rolling frequency and the fregquencles of the pitching and yawing
oscillations of an existing transonlc research slrplans are plotted as
a function of altitude in figuwre 11. This alrplane has a large amount
of directlonal stebility, so that the yawing oscillatlion has a hilgher
. frequency than the pitching ocscillatlion. With the assumed value
of Pb/2V of 0.05 and Mach number of 0.8, the rolling frequency
exceeds the piltching frequency at an altitude of about 28,000 feet when
the static margin % is 0.05, or at 46,000 feet when the static

L/m
margin is 0,.,10. The alrplane would perform a longltudlinal dlvergence in
rolls 'of thils rate at higher altitudes. Higher rates of roll would, of
course, cause instebllity at lower altitudes.

The ingtabllity would not be present if the perlods of the piltching
and yawing osclllations were equal. It would appesar advisable to provide
approximately equal values of longitudinal and directional stability on
alrplanes that are lintended to roll rapidiy. Because the longitudinal
stabllity lnevitably varles with changes in center—of—gravity position,
however, this conditlon may not be easy to realize in praoctice. It is,
therefore, desireble to provide falrly large values of both longitudinal
and directional stebility on alrplanes wilth high rates of roll in order
to avold the Instability due to rolling.

The rgtes of divergence Ffor the unstable cases lnvestigated are
generally not large enough to cause unduly large changes in attitude of
the alrplane in rolling to angles of bank up to 90°, but they masy cause
serious attitude changes In a complete 360° roll. Large yawing moments
dus to rolling, and pitching moments due to sideslip, are usually present
which cause dlsplacements in pitch and yaw during the early stages of a
roll. These displacements would increase rapldly if Ilnstabillity were
rresent. Consideration of these dlsturbing moments alone leads to the
conclusion thet relatively large values of directional and longltudinal
stability are desirgble on alrplanses intended to roll rapidly.
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The effect of rolling on the longitudinal stability in the case when
the dlrectlonel stabllity is very large may be considered as a forward
shift In aerodynemlc center or 1n the stick—flxed maneuver point.— This
shift 1s glven as a fraction of the chord by the expression

.

oL, pScb? .

On a glven airplane the shift in mensuver polnt is thus proportional

to (pb/EV) and varles inversely as the air density. Thils same formula
epplies approximstely for practical values of directional stability,
provided that the longitudinal stability le small compared with the
directional etability. For the alrplanse used as an example in figure 11,
the ghift in mansuver point with a value of pb/2V of 0.05 at sea level
is 4.6 percent chord and at 50,000, feet altitude is 31 percent chord.

Miggiles.— Some migsiles differ from full—secale alrplanes in having
much emaller wing spen, higher density, and a greaster proportion of
welight In the fuselasge. The rolling frequency of these misgiles may
therefore be larger in comparison with the frequencles of their longitudinal
and directional ocecillations.

Some research missiles, whilch were not roll-stabillzed, have been
uged to investlgate the longltudinal and directlonal stabillty of
ailrplane configurations. The precedling analysis shows that the frequencies
of ogscillations recorded by instruments in ths missile cannot be used
directly to compute the longltudinal asnd directional stability unless
the rolling frequency ls very small In comparison with these frequenciles.
If the rate of roll were reocorded and a sufficlently long record of the
motion were obtalned under steady conditions to enable determinstion of
the frequencies of both modes of oscillation, 1t would be theorstically
possible by use of charte such ag flgures 3 to 5 to compute the
frequencles of the nonrolling alrcraft. These steady conditiona are
rarely obtalned in practice, however. Devices to I1imit the rate of roll
or to roll-stabilize such research mlsslles therefore should be used
unless thelr Inherent ratem of roll are very small.

The preceding analysis may be used to Indicate the deslgn features
requlred for stabllity of missiles that sre intended to roll continually
in flight. If such miselles roll at a smaller frequency than the
freguencles of their longitudinal and directional oscillatlons, then
equal stability in both planes 1s desirable, as it was in the case of the
full-scale airplane. If the rolling frequency 1ls greater than that of
the more repid oscillation, as 1s usually the case with such missiles,
then & fin providing stability In only one plane ig adequate to
stabllize the misgile. The instebility in the other direction should
not be B0 great as to place the system in the unsteble region of flgure 3,
however. )

The results of figure 3 indlcate that = body which 1s unstable in.
both planes cannot be stebilized by spinning, & result which eppears to
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disagree wlth the normsl practice of stablllzing projectiles by spinning.
The gtabilization of projectiles by spinning cannot be studled from the
numerical results presented in figure 3 because these results apply to
the case where the moment of inertla about the longitudinal axis Iy

is zero. Thse stabllity of spinning projectiles depends on the value
of Ix. The ‘preceding analysls may readlly be extended to Include the

case of an axislly symmetrical body with a finlte valus of Iy. In this

case, 1t may be shown that the axlis of the rapidly spimning body will
perform constant—emplitude osclllatlons in the absence of damplng forces
whether or not It ls stable in pitch and yaw. If the body is unstable,
however, demping forces in plitch and yaw will produce an incressing .
oscillastion; whereas, if the body 1s stable, demping forces will produce
a decreesing oscillation. Inasmuch as most artillery projectiles are
unstable in pitch and yaw, they cannot be called truly stable In flight.
The rate of dlvergence of the osclllation 1s small enough, however, to
avold apprecileble increase in amplitude during the time of flight.

CONCLUSIONS

An analysis has been made to ghow the effects of rolling on the
stabllity of aircraft. In thls analysis, it was assumed that the
longitudinal and directlomal motlions involved only pltching and yawlng,
respectively, and that the rolling velocity was constant. The neglect
of the additional degrees of freedom and of the possible effect of
pldeslip on the rolling veloclty may lead to some inaccuracy, particularly
in ceses where the rolling velocity is small and the dihedral effect,
large. The analysils ls expected to apply closely, however, in the
cases of greatest interest where the alrcraft has high density and is
rolling rapidly. From the results presented, the combinations of
directional and longitudinal stability that produce stable motlon with
different rates of roll may be calculated and the effect of rolling on
the characteristics of the motion in pitch and yaw may bs found. The
analysis leads to the following conclusions:

1. Rolling of en airplane masy lntroduce insrtla forces that tend
to swing the fuselage out of line with the flight path. These forces
tend to produce (1) longitudinal instability if the longitudinal
stability of the nonrolling alrplanse 1s small compared with its
directional stebility and (2) directional instability if the directional
gbabllity of the nonrolling airplane 1s small compered with 1ts
longitudinal stability. This tendency towerd lnstabllity lastis only
as long as the alrplane rolls and, therefore, would not affect normel
flying of an airplans. The destabllizlng effect may be appreciable
on alrplanes of short span and high density, carryling most of theilr
wolght In their fuselages, and flyling at high altitudes. On such
alrplanes, dangerous attlitudes might be reached in rapid rolls, particularly
if the rolling continued through 360°. Instabllity occurs when the rolling
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frequency exceeds the lower of the pltchlng and yawing natural frequencies.
This type of Instebility does not occur 1f-the stabllities about the two
axes are about equel though rolling reduces the stability in this case.
—_—u—-—-.___’-""'-
2. The pltching and yawling osclllation frequencies as recorded by
Instruments in an alrcraft are changed when the alrcraft is rolling. !
These frequencles measured in a rolllng alrcreft cannot, therefore, be!
used dlrectly to calculate the longitudinal and directional stability 5
.of the nonrolling alrcraft. e

3. Misglles rolling rapldiy mey be stabilized by a fin in only one
plane, provided that-the frequency of the rolling motion 1s greater than
the naturel frequency of the oscillatlon of the nonrolling milssile in
the plane in whilich the fin produces stabllizing moments and provided
that the instabldlity in the other plane is not too grest.

Langley Memorial Aeronautical Laboratory
Netionsl Advisory Committee for Aeromauviics
Langley Field, Va., March 25, 1948
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Bar, moment of inertis, I

Viscous damping moment
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Figure 1.- Sketch of single-degree-of-freedom system.
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Top view

Side view

Figure 2.- Relations between angles of pitch and yaw and angular
velocities about body axes and flight-path axes. (Views
perpendicular to flight path.)
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A Section A-4

(a) Symmetrical rolling body stabilized by fins, with weight distributed
along the longitudinal axis, Sectional view illustrates general
motion of a point on the axls.

Po
Tail fins on body \$_
7~ ’ ~
/ AN .
d//(/)ga :}“bpo
- Flight-path axis ~——7

(b) Sectional views through tail fins of symmetrical rolling body, showing
the two types of motion which lead to constant emplitude yawing and

pitching oscillations with respect to body axes.
-~ NACA ,.—/_

Figure 6.~ Motion of a symmetrical rolling body stabilized by fins, with
weight distributed along the longitudinal exis,.




(e¢) Generation of motion on a tilted straight line
by combinetion of two circular motions with the same
frequency end amplitode, opposite direction end arbi-
trary phase differencea, Circle B is shown displaced
from clrcle A for clarity,

L29T "ON NI VOVN

(d) Generation of motion on an ellipse with
tilted axis by combination of two cireular
motions with the same frequency, unequal
amplitude, opposite direction,and arbltrary

phase difference.

Figure 6.~ Concluded,
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Figure 10.-

(b) foe = C*"’*= 0.2.

Continued.
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(c) oug = O, g*w* = 0.2 or vice versa.

Figure 10.- Concluded.
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Figure 11.- Yawing, pitching, and rolling frequencies as a function of

altitude for an existing transonic research airplane. oV

M = 0.8.
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